

Unsmoothing the System: Designing for Specific Forms and Experiences

Unsmoothing the System: Designing for Specific Forms and Experiences

1. Introduction

The early stages of Unit 2 began with a seemingly simple question: what happens when a procedural system is designed to produce highly personal results? My initial studio work explored this through the manual iteration of Karel Martens-inspired monoprints (figure 1), focusing on the intuitive repetition, layering, and rotation of shapes. This analog iterative exploration of chance soon transitioned into a more rigid examination of standardization, leading me to physically cut up and recombine silkscreen prints (figure 2) to observe what new forms might emerge from disruption. The desire to understand this balance between strict procedure and personal outcome drove my move into the systematic randomness of p5.js.

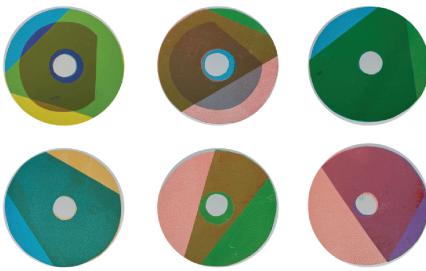


figure 1. Positions through Iterating

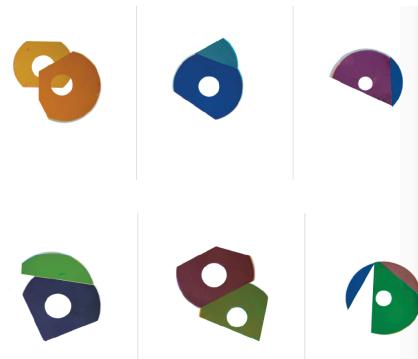


figure 2. Positions through Contextualising

This technological shift evolved into the *Dancheong* typeface system. *Dancheong* (figure 3) refers to the ornamental patterns found on traditional Korean wooden buildings and artifacts, especially temples. In this project, these culturally specific architectural patterns were translated into modular typographic forms. This process established the foundational tension of my enquiry: the conflict between specific, culturally rich forms, like *Dancheong*, and the generalized, abstract, rigid systems influenced by universal design methodology.

figure 3. Traditional Korean *Dancheong* patterns on a temple structure

Tracing the origins of these dominant design systems revealed their deep roots in the rationalist traditions of institutions like the Ulm School of Design. This standardization, famously articulated in Dieter Rams' *10 Principles of Good Design* (appendix 1), became the dominant force in graphic design, aiming for clarity, efficiency, and universality through the reductive "smoothing" of all non-essential elements (Jong et al, 2017, p. 39). Engaging with this history forced a critical re-evaluation of my own practice. What gets lost in this relentless process of standardization? When specificity, cultural nuance, and individual experience are erased in favor of a universal average, does the pursuit of *Good Design* risk sacrificing meaning for mere efficiency?

My current line of enquiry forms a direct response to this concern. I am investigating how specific cultural forms can resist the rigidity of standard design systems. The methodological response I have developed for this enquiry is "unsmoothing." This is not a search for pure randomness but a resistive act. It is the process of using friction, malfunction, and "visual pollution" as critical tools to deliberately re-introduce the specific, singular context that was erased by standardization. It is an attempt to bring back what is lost when design is generalized.

This writing outlines my journey through this enquiry. It begins by contextualising my move from intuitive making to rule-based systems, framed by theories of contingency and knowledge production. It then moves into critical case studies that establish the argumentative tension of my practice: utilizing Karl Nawrot to argue for specificity, and contrasting my "unsmoothing" experiments against the established "Good Design" principles of Dieter Rams. Ultimately, this paper argues for a new design mandate focused on individualized experience over standardized authority.

***A Note on Form:** Reflecting the core tension of this enquiry, the visual form of this writing itself shifts between these opposing modes. The opening sections (1 and 2), which ground the context and theory, are presented within a rigid, standardized grid as a nod to the clarity of established systems. As the argument

moves into critical analysis through disruption and "unsmoothing" (Section 3), the layout itself introduces intentional grid misalignment, typographic friction, and micro-errors, mirroring the very malfunctions it discusses. Finally, the synthesis(section 4) resolves into a new visual stability, representing a system that has successfully integrated specificity. The document, therefore, is not just a record of the research but an enactment of it.

2. Context and Positioning

In the earlier phase of Unit 2, the line of enquiry I focused on was: How can randomness be structured through generative design, and what new visual outcomes emerge when generative rules replace intuitive choice? The initial phase involved manually cutting and recombining silkscreen-printed shape fragments, using instinct and visual intuition to guide each iteration. While this allowed for playful experimentation and unpredictability, the process lacked a systematic framework through which the results could be extended or critically analysed.

Building on these initial findings, I introduced a rule-based approach using p5.js to generate shape combinations algorithmically. This marked a conceptual shift from intuitive assembly to a structured visual system where randomness was embedded within a coded logic. Drawing from references such as the *Conditional Design Workbook* (Blauvelt et al., 2013) and *The Intrinsic Logic of Design* (Herdt, 2002), the project became a study of how constraint, sequencing, and parameter-driven decisions can influence form.

To evaluate the outcomes, I documented the new colours produced through overlapping shapes, creating a data table as a secondary visual layer. This hybrid approach, combining generative coding, visual iteration, and physical process, allowed for the emergence of unexpected compositional patterns while questioning the balance between control and unpredictability within design practice.

My shift from intuitive manual experiments to coded, generative systems required a robust theoretical framework to keep the work from becoming purely technical. I needed to understand not just *how* to build these systems, but *why* they were relevant to a critical design practice. This grounded my early studio work in theories of contingency, procedural variation, and knowledge production.

2.1. From Intuition to Contingency

In the early phases of my project, I relied on intuitive manual processes to reconfigure silkscreen fragments. While visually engaging, this process lacked a systematic framework that could be critically

analyzed or extended. The transition to a p5.js-based system was not just a change in tools but a conceptual shift toward inviting "contingency" into the work.

Jeremy Till's writing on contingency offered a critical framework for understanding this generative potential of unpredictability. Till challenges the idea that uncertainty is a failure in the creative process, suggesting instead that it is foundational to how creative work unfolds (Till, 2009, p. 45). This concept directly resonated with my approach to randomness. By developing a p5.js system to introduce structured randomness, I allowed compositions to emerge from coded parameters rather than deliberate, moment-to-moment design choices. Till legitimizes this shift by framing contingency as a condition through which form can emerge meaningfully.

This shift was further supported by the *Conditional Design Workbook*. The manifesto advocates for designing sets of conditions under which outcomes can emerge rather than designing the outcomes themselves (Blauvelt et al, 2013). The introductory excerpt¹ of the *Conditional Design Workbook* establishes the philosophical foundation of Conditional Design as a practice rooted in systems, constraints, and iterative processes. Rather than focusing on aesthetic outcomes, the text advocates for designing sets of conditions under which outcomes can emerge. This perspective directly informed the second phase of my project, where I moved from intuitive, manual recombination of silkscreen fragments to a structured, rule-based process using p5js. By coding parameters that govern the random combination of shape fragments, I shifted the focus from authoring final forms to authoring a process. The emphasis on openness, time, and the unfolding of work over iterations reflects my aim to use randomness as a controlled material within a design system. The excerpt reframes creative constraints not as limitations but as generative tools, encouraging an approach where process, not outcome, is the primary site of meaning. It helped me clarify my own shift toward process-driven making, where visual outcomes are the byproduct of designed conditions.

However, introducing code creates a new problem: the problem of anticipation. Herdt (2002, p. 118-127) articulates generative design as a system where variation emerges from embedded rules. Her framing of "anticipation" as a design problem was especially relevant. My earlier manual experiments embraced randomness but lacked a structure for reflection. Introducing code imposed a framework that allowed randomness to be legible, traceable, and repeatable. Herdt's critical position helped clarify that this is not about choosing between control and spontaneity but about designing the conditions for new forms to arise.

¹ Conditional Design, A methodology that determines a set of restricting *rules* for the *process*, as opposed to a plan that determines the final result of something. The term was coined by Luna Maurer, Edo Paulus, Jonathan Pucky and Roel Wouters in their manifesto (Blauvelt et al, 2013, p.ii-xiv)

Practical examples of this methodology provided a benchmark for my own system architecture. David Reinfurt's *Multi*(2019) application presents a working model for translating intuitive design into procedural variation. The way *Multi*(figure 4) generates compositions from minimal typographic elements using predefined rules echoed my system's logic for combining shape fragments. It helped me frame my code as a design system rather than just a tool. Similarly, the video work *Rug* by Hodgson(2000) explores rhythm and perceptual drift through looped visual forms. While not computational, Hodgson's visual shifts mirror the layered logic of my p5.js compositions. It reinforced my aim to let the viewer *sense* time and unpredictability through visual rhythms, even when those rhythms are generated by rigid code.

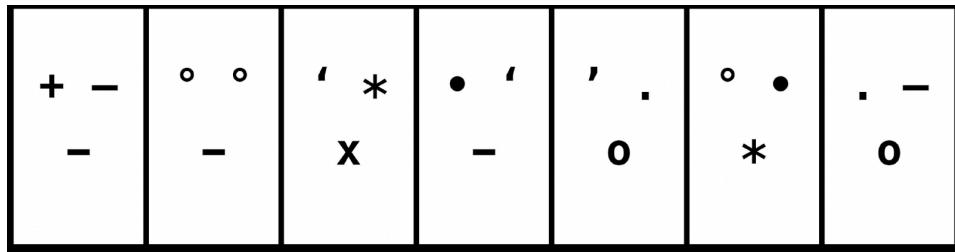


figure 4. Multi

2.2. Modularity as Knowledge

As my work evolved from abstract shape generation into specifically typographic forms, particularly incorporating *Dancheong* patterns, I needed to contextualise how these modular systems operated beyond mere aesthetics. The generative work raised a paradox. Although it celebrated variability, it also relied on the same logic of systematisation that underpins standardized design. I wanted to see whether a system could still be open if it were grounded not in universal geometry but in particular cultural logic.

The influence of Karl Nawrot became important here. Nawrot approaches type design with the mindset of an architect, using physical stencils and architectural motifs not just as inspiration but as the literal tools for constructing letterforms (Mason, 2016). His *Breu* typeface(figure 5) demonstrates how a rigid, modular system, when derived from spatial rather than purely typographic logic, can generate difference rather than uniformity.

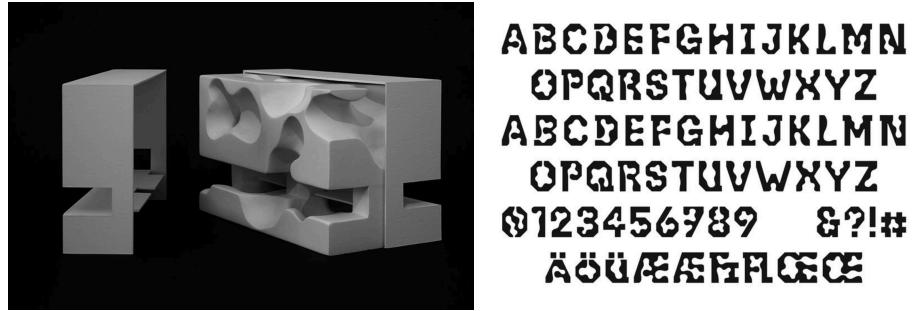


figure 5. *Karl Nawrot's Breu typeface showing stencil construction*

Inspired by this method, I initially treated the abstract shapes generated by my p5.js code as digital stencils (figure 6), using them as raw tools to construct new letterforms. This process naturally evolved into a deeper engagement with architectural motifs, leading me to the *Dancheong* typeface (figure 7). Just as Nawrot uses architectural models to draft type, I began using traditional Korean architectural patterns as my modular "stencils." The resulting forms were hybrids, half-architectural and half-typographic, resembling letters but resisting immediate reading. Through this, I realised that form itself could perform cultural negotiation; the work didn't just replicate heritage, it constructed a dialogue between traditional logic and computational methods.

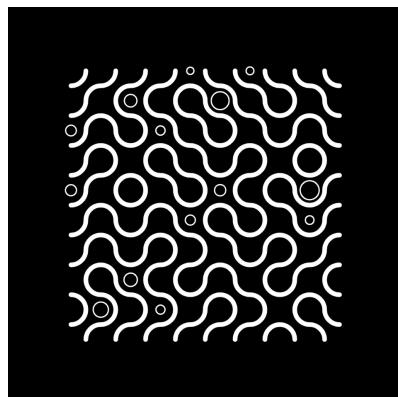


figure 6. p5.js code experiments

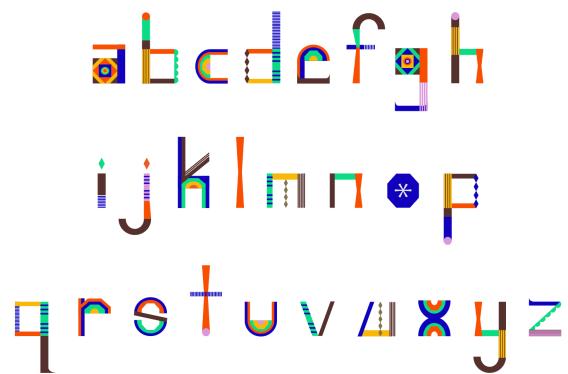


figure 7. *Dancheong* typeface - final letterforms

Johanna Drucker's *Graphesis* fundamentally reshaped this positioning. Drucker argues that visual forms are not neutral representations but actively shape the frameworks of knowledge in which they exist; they do not simply display information, they *constitute* it (Drucker, 2014, p. 5). This reoriented my type system from a focus on composition to an understanding of design as a mode of inquiry. Using code to generate forms was no longer just process-driven; it was a way to interrogate how knowledge becomes visible. Drucker's emphasis on cultural framing helped me understand that *Dancheong* patterns operate as visual systems with embedded meaning, not just decorative motifs.

This systemic approach aligns with Lupton and Lipps' (2013) definition of systems-based design: "System-based design is not about creating a single solution, but about designing a set of relationships that generate many possible outcomes." This insight validated my decision to move from intuitive silkscreen collage toward generative scripting in p5.js, where I designed a set of rules to govern randomness. Their focus on process over product helped me see the code not just as a tool for replication but as a method for defining a dynamic visual language. Rather than aiming for fixed compositions, I now see each output as one expression within a designed system. This reference sharpens my methodological stance: embracing code and constraint as instruments of iteration, unpredictability, and visual exploration.

Supporting this exploration of variable modularity were the practices of Nigel Cottier and Jose Quintanar. Cottier's (2018) visual system of variation clarified how constraint can still enable expressiveness. This became essential as I moved from abstract shapes generated in p5.js into the structured space of typographic construction. His methodical process helped me think through how to use repeated components without collapsing differences. I wasn't interested in refining one perfect form but in exploring what happens when rules generate instability or slippage. His approach to modular form-making became a benchmark for how I could maintain both visual rhythm and unpredictability. When I began integrating *Dancheong* patterns into my work, I used Cottier's logic of transformation to map cultural motifs onto typographic parts. The modular variations he presents helped me structure my own experiments without enforcing visual uniformity. Instead, they helped me approach structure as an open-ended system where difference accumulates over time. Cottier helped me link coding, iteration, and visual decision-making in a way that still welcomed surprise.

Quintanar's (2021) approach to composing landscapes through predefined templates and repetitive grid structures offered a valuable analogue to my own digital stencil-based design process. Rather than physically drawing, I created modular elements using generative code in p5.js and recombined them through digital design tools like Adobe Illustrator. Quintanar's method of working with constraints to explore variation supported my transition from freeform, intuitive composition to a more structured,

rule-driven framework. His reinterpretation of landscape through formal systems (figure 8) aligns with how I approached Korean *Dancheong* patterns, viewing them not as static motifs to replicate but as underlying visual logics that could be translated into new typographic structures. What resonated most was his emphasis on iteration within limits and how systemic composition can still generate nuanced, culturally embedded outcomes. Quintanar's practice helped me articulate a design position where modularity and repetition do not diminish expression but instead become a method of investigating form, space, and reference through digital design environments.

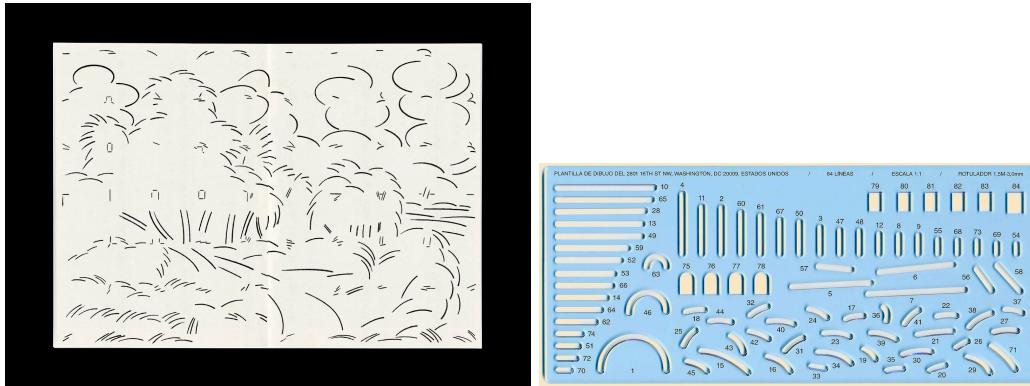


figure 8. Jose Quintanar's Drawing Templates and *Dutch Landscapes*

Ultimately, this contextual foundation culminated in a reconsideration of my own role, heavily influenced by Roland Barthes' 'Death of the Author' (1977). When working with generative code or adapting traditional *Dancheong* structures, I relinquished direct aesthetic control of the final output. This decentralized authorship made the project feel like a conversation between systems, histories, and the viewer rather than a purely personal stylistic exercise.

2.3. The Shift to Critical Unsmoothing

The transition from randomness to cultural modularity deepened the enquiry's focus on specificity within systems. Each output was unique yet governed by shared rules. More importantly, the work revealed that systems could be designed to encode local context rather than erase it. The project therefore marked the point where my practice moved from exploring contingency as aesthetic to using it as a critical stance against abstraction.

This shift required me to examine the foundational logic of the systems I was critiquing. Historically, this logic is rooted in the rationalist traditions of institutions like the Ulm School of Design and formalized in Dieter Rams' *Ten Principles for Good Design*.² These frameworks prioritize clarity, universality, and the reduction of "visual pollution" to create functional, unobtrusive objects (Rams, 1984, cited in Jong et al, 2017, p. 39).

I interpret these historical examples as manifestations of a broader process best described as "smoothing," a concept I borrow from cartography² and road mapping, where complex roads and maps are generalized to improve readability at the cost of specific accuracy (figure 9). In design, this smoothing impulse happens at every level: aesthetic roughness is polished into "good taste," complex local variations are standardized for scalability, and behavioural friction is removed to create "seamless" user experiences.

figure 9. Smoothing in cartography

While smoothing makes systems legible and efficient, it also erases the politics, decisions, and humanity that make them real. In daily life, we hide awkwardness for social smoothness. We tidy homes to remove the friction of lived reality. Algorithms filter our digital feeds to remove contradictions. My enquiry thus pivots to a critical new question: What gets lost in this relentless pursuit of smoothing? When all cultural nuance and individual texture are erased in favor of a universal average, the pursuit of "good design" risks sacrificing meaning for mere efficiency. This realization established the fundamental tension that drives the rest of this exploration: the conflict between the specific, singular, culturally rich form and the generalized, abstract rigidity of universal systems.

² the art and science of graphically representing a geographical area, usually on a flat surface such as a map or chart

3. The Argument Through Tension

My methodology for responding to this conflict is "unsmoothing", a deliberate design practice that introduces friction, contradiction, and systematic malfunction to expose the hidden rules of standardization. By using the medium of design itself, through typographic glitches, disrupted signage, and layered noise, I aim to reveal the residue that smoothing erases: **structural ambiguity, error, and the traces of human process.**

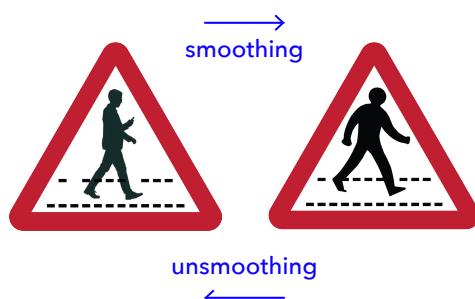


figure10. Conceptual diagram of smoothing vs unsmoothing

3.1 Constructing Specificity (Karl Nawrot & Dancheong)

Karl Nawrot's *Breu* typeface acts as a key reference for my project and a counter-model to rigid systems. *Breu* is central to my understanding of how modularity can foster difference rather than generalization.

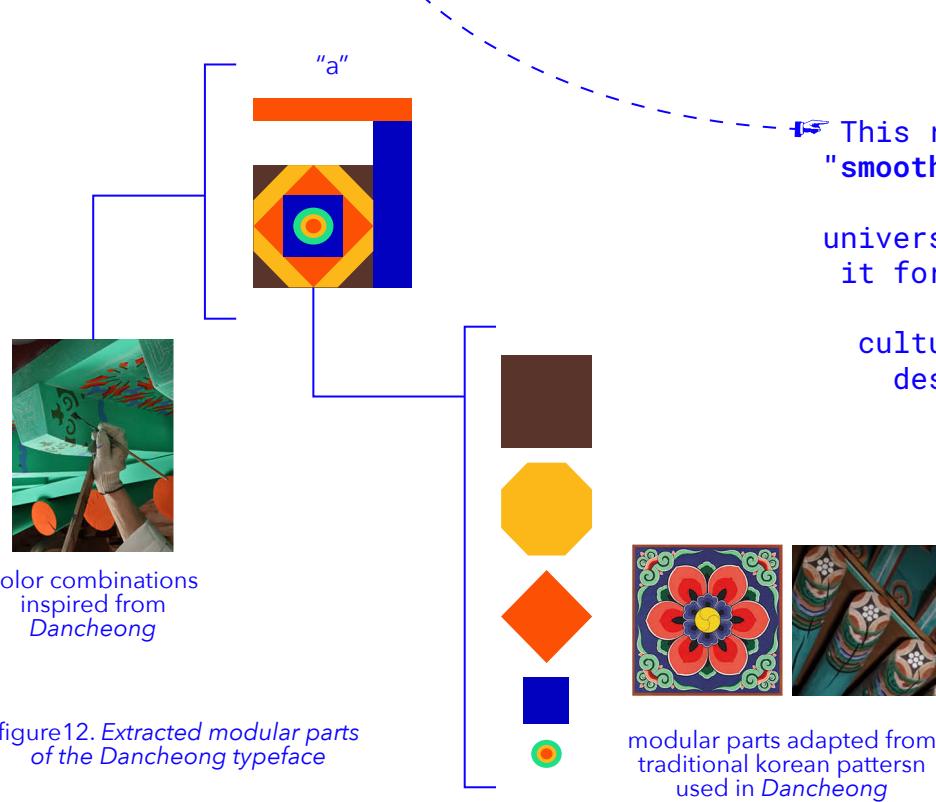


figure11. Breu Typeface

Nawrot's work shifted my understanding of modularity. It is not just a constraint for ensuring consistency but a catalyst for difference. His methods offered me permission to embrace visual noise and imprecision which mirrored the unpredictability inherent in my generative code.

By incorporating Nawrot's logic, I was able to frame a process where modularity meets cultural memory. I treated the historical Dancheong patterns not as references to reproduce but as structural logics to reinterpret. In this way, following Nawrot's lead, my typographic system became spatial, cultural, and iterative, a system where type is constructed, not just drawn.

In my specific application of this "kit-of-parts" method, I extracted visual forms from *Dancheong* motifs, reduced them to modular parts, and began designing a new typeface. These shapes were no longer randomly generated, but they were culturally grounded, formally structured, and emotionally meaningful. *Dancheong* reflects the dominant colours in nature, such as green from leaves, brown from trees, and shades of red from flowers, and this was applied to the design of the typefaces as well. Unlike standard modular typefaces that smooth out irregularities for cohesion, I deliberately retained the ornate complexity and specific color palettes of the original architectural forms. When constructing Latin letterforms, I forced these culturally loaded modules to perform typographic functions they were not designed for. Looking at the letter "a" for instance, the counter (the area of a letter that is entirely or partially enclosed by a letter form or a symbol) is filled with modular parts inspired by the patterns of *Dancheong*. The resulting forms are structurally unstable and visually dense, actively resisting immediate legibility.

3.2 Disrupting Universality (Rams vs. Unsmoothing)

If Nawrot and Dancheong represent the model of specificity I aim for, the design philosophy of Dieter Rams represents the "smoothing" I am actively working against. This investigative approach, which treats error as a critical tool, stands in direct and productive tension with the design philosophy of Dieter Rams, specifically his "Ten Principles for Good Design." His work and his principles form one of the most powerful articulations of modernist design ethics, emphasizing the vision of order, honesty, and restraint. But precisely because his philosophy is so coherent, it also reveals the edges of my own practice. Rams' pursuit of purity, simplicity, and universality stands in tension with my inquiry into the uneven, the raw, and the unresolved.

Dieter Rams' Principles: The Ultimate Smoothing

Dieter Rams' design ethos is the ultimate expression of smoothing: the process of reducing noise, irregularity, and contradiction to produce something consistent, legible, and predictable. This is not merely an aesthetic preference but a statement born from post-war Modernism, aiming to create "leeway for our own selves" by drastically reducing the chaos of stimuli that surrounds us (Rams, 1984, cited in Jong et al, 2017, p. 39). Rams famously concludes his ten

principles with "Good Design is as little design as possible," advocating a return to purity and simplicity. This statement expresses a view that aligns design with reduction, or a subtractive process. Simplicity, in this context, is achieved by taking things away until only the essence remains. His notion of "less, but better" proposes that good design reveals truth through clarity and through what is left after all noise has been removed.

The principles enact smoothing in different categories, relying on both subtractive and additive restraint:

Systematic Smoothing (Principle 4, 8): Good design is "understandable" and thorough "down to the last detail." This precision ensures that a product's structure is clear, self-explanatory, and free from error. This is achieved through a subtractive process of eliminating all extraneous detail and an additive process of ensuring nothing arbitrary is added in the first place, by specifically stating "Nothing must be arbitrary or left to chance" (Jong et al, 2017, p. 122).

Principle 4: Good Design Makes a Product Understandable

Principle 8: Good Design is Through Down to the Last Detail

figure13. Principle 4: All-wave radio T 1000 (1963)

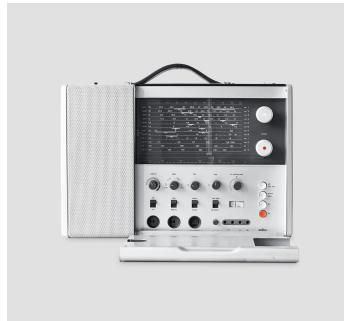


figure14. Principle 8: Sprocket calculator ET 33 (1977)

Behavioural Smoothing (Principle 2): By optimizing a product's utility, design makes it useful and disregards "anything that could possibly detract from it." This relies on a subtractive process to eliminate user confusion or hesitation, enabling a seamless, frictionless experience. The goal is an environment where no extraneous variables are introduced to distract or impede the user.

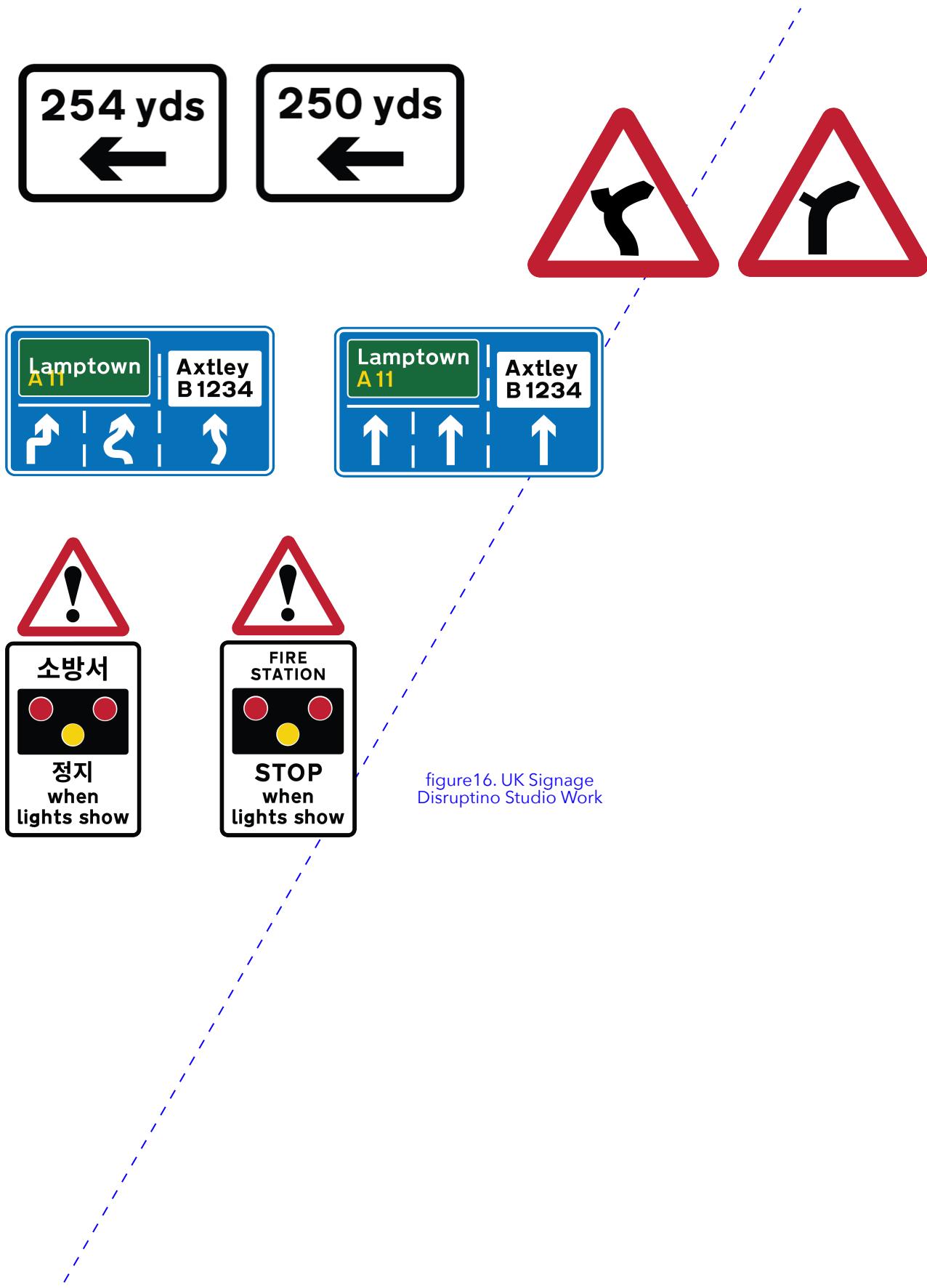
My exploration, by contrast, begins at the moment when this control slips. "Unsmoothing" is an attempt to see what happens when clarity is not the goal but the question. If Rams' philosophy represents design as a process of filtering the world, my exploration, such as the systematic disruption of the UK Road Signage system, looked at what occurs when the filter is removed or reversed. To "unsmooth" is not to reject function or clarity but to reintroduce the structural ambiguity that clarity hides. It acknowledges that design is always entangled with uncertainty, with accidents, and with the physical and emotional residues of making.

Principle 2: Good Design Makes a Product Useful

figure15. Principle 2: Pocket radio T41 (1962)

Aesthetics & Functional Conflict

The conflict between Rams' principles and unsmoothing can be categorized into two structural areas: Aesthetic Values and Functional Purpose.


A. Aesthetic Values: Uniformity vs. Specific

Rams' Aesthetic Value: Uniformity	Unsmoothing's Aesthetic Value: Specific
To achieve purity, neutrality, and universality. The goal is a visual experience that is unobtrusive, allowing the user's self-expression to fill the space (Principle 5).	To achieve critical awareness and contextual specificity. The goal is a visual experience that is obtrusive, using texture, error, and residual complexity to force decoding and reflection.

Principle 5:
Good Design is Unobtrusive

The Contradiction in Visual Language:

Rams resists any design that employs "bold designer stimuli" or "chaos of shapes, colors, and symbols" (Rams, 1984, cited in Jong et al, 2017, p. 39), viewing such elements as clutter. My practice, through the typographic interference (mixing English and Korean in signage) and icon substitution experiments, deliberately generates this chaos. I argue that the noise/chaos is evidence of political or systematic choices that the smooth, ordered aesthetic attempts to erase.

Visual Pollution as Critical Resource (Principle 9):

My unsmoothing process re-introduces this visual pollution (the raw, detailed, and seemingly chaotic elements). The noise my exploration re-introduces is the evidence of cultural specificity or systematic fragility that Rams' universal simplicity erases. This pollution, therefore, becomes a critical resource, the texture and friction that compels the user to stop, notice, and question the assumed neutrality of the design rules. This practice reinterprets the non-essential not as clutter but as context and it treats the disruption as a visual record of the system's own choices.

Principle 9:
Good Design is
Environmentally Friendly

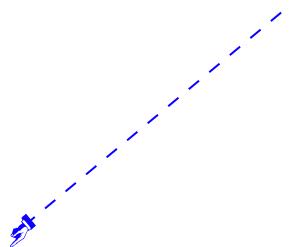
B. Functional Purpose: Utility vs. Reflection

Rams' Functional Focus: UTILITY	Unsmoothing's Functional Focus: REFLECTION
Utility and Understandability (Principle 2, 4). The system must perform its primary functions seamlessly, eliminating all hesitation and error.	Communication, Reflection, and Contestation. My practice is concerned with function, but the goal is to create a system that works by exposing its own flaws.

The Contradiction of the Arbitrary:

The most profound functional contradiction lies in Rams' Principle 8 against my use of chance. Rams' insistence that "Nothing must be arbitrary or left to chance" functionally guarantees user respect by ensuring reliability. My unsmoothing practice, however, employs chance as a tool. The systematic disruptions of the UK signage, like the grid/layout disturbance or the exaggeration of instructions, are calculated acts of introducing the arbitrary.

My practice's function is to fail constructively. It uses systematic malfunction to create an interface for reflection on civic authority, rather than one for efficient wayfinding. The core of my design is not the final form, but the interface to the rules. While Rams achieves functional clarity by making the system self-explanatory (smoothing), my goal is to make the rules visible so they can be contested by the user (unsmoothing), prioritizing awareness over efficiency.


The conflict between these two functional ethics leads to new, focused questions for my final project phase.

The Ethics of Unsmoothing: -----

Rams sees non-arbitrariness as a respect for the user. If my work intentionally creates confusion (such as the deliberate malfunction in signage), does it become "anti-user"? This requires me to ask: Can I design an interface of malfunction that is critically honest and transparent about its rules, rather than one that is merely confusing?

Perception and Speed:

This functional conflict extends to the very speed of perception. Rams' products are designed for clarity at a glance; they communicate instantly but remain unobtrusive, aligning with the modern demand for efficiency and speed. Unsmoothing, however, intentionally demands slowness from the viewer, asking them to notice delicacy, decode friction, and engage with uncertainty. Rams' principles support the desire for order that has shaped the majority of modern design, but unsmoothing questions its cost: What does it mean to live in a world where everything is optimized and every visual surface is rounded for immediate consumption? This obsession with speed and seamlessness often leads to the erasure of the sensory, the emotional, and the uncertain, which are essential dimensions of human experience.

Adaptability and Longevity:

The functional clash also raises questions about longevity. Does embracing imperfection risk wastefulness, or can it actually extend the life of objects by accepting their wear and transformation? Adaptability is achieved by creating a system whose rules are visible and open to incorporating new, unpredictable variables (chance/randomness). This suggests a different path for longevity: one that prioritizes adaptability over unattainable permanence.

3.3 Unsmoothing the Everyday (Atelier Hoko's A Daily Act: Workbook)

While the road signage experiments address "unsmoothing" at the macro scale of public infrastructure, the work of Atelier Hoko demonstrates how this same critical friction can be applied to the micro-scale of daily personal routines. Their project, A Daily Act, functions as a handbook for unsmoothing everyday life, providing a crucial counterpoint that balances my investigation.

Atelier Hoko's practice is rooted in reintroducing discomfort into the polished flow of daily existence. Their workbook provides specific, often banal instructions designed to disrupt ingrained habits, such as "57 Crawl out of your bed differently" (Atelier Hoko, 2025, p. 20) or "84 Stand in the middle of the lift regardless of whether you are alone or with other passengers" (Atelier Hoko, 2025, p.29) shown in figure 14. These are not grand gestures of rebellion but what they describe as "a nudge, a tap or a thump just enough to unsettle the 'everydayness' of our lives."

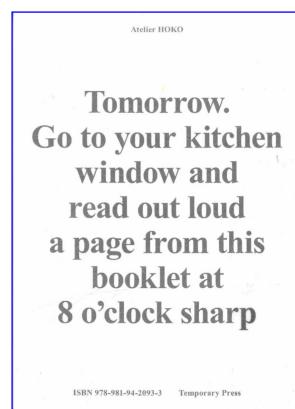


figure17. Scanned pages from Atelier Hoko's A Daily Act: Workbook

84 Stand in the middle of the lift regardless of whether you are alone or with other passengers.

57 Crawl out of your bed differently.

→ This aligns precisely with my own methodology. Just as I use small typographic glitches to unsettle the authority of a road sign, Atelier Hoko uses small behavioral glitches to unsettle the authority of routine. They take quintessential tools of "smooth" communication, like flyers, banners, and postcards, and fill them with "impulsive, unfiltered" thoughts, effectively hacking the established format (Atelier Hoko, 2025, p.61).

Their emphasis on "specificity in spontaneity" also directly supports my argument against universal standardization. They note that "No single instruction could be displayed or distributed in another location without needing to be tweaked" (Atelier Hoko, 2025, p.62).

This acknowledges that true engagement requires sensitivity to context, whether it's a gathering place or a contained space with plants. By forcing the participant to "slowly learn how to see," their work proves that "unsmoothing" is not just about aesthetic disruption but about re-sensitizing the human body and mind to its environment. It validates my thesis that introducing friction is not a nuisance but a necessary condition for an "ordinary action [to] become extraordinary" (Atelier Hoko, 2025, p.61)

4. Synthesis and Projection

The synthesis of these studio explorations and critical engagements leads to the triangulated position of this research. My journey from the abstract randomness of p5.js to the culturally loaded modularity of Dancheong¹, and finally to the deliberate disruption of the UK Road Signage system, has revealed a recurring focus: the necessity of individualized experience over generalized templates.

¹The ornamental patterns found on traditional Korean wooden buildings and artifacts, especially temples

My research contribution lies in challenging the assumption that universal systems are inherently neutral or superior. By deliberately introducing "malfunction", such as breaking the arrow logic of a road sign or injecting foreign scripts into established information hierarchies, the abstract authority of the universal system collapses. This collapse reveals the system's fragility and its inherent cultural biases. The friction generated by this act forces the viewer to confront the specific context that standardization was designed to erase.

Moving forward, this position projects my research toward a practice that prioritizes the reclamation of specific, singular reality over the abstract authority of standardization. Rather than pursuing a single new aesthetic, my future work will focus on developing systems that are inherently unstable, design frameworks that require user participation, chance, or cultural specificities to function at all. This might involve creating generative tools where the user must input their own cultural data to produce a form, or designing public information systems that change based on local environmental data, refusing to be static or universal.

Ultimately, "unsmoothing" redefines the core objective of my practice. The aim is no longer how efficiently a user can navigate a system but how aware they become of the system itself. By revealing complexity rather than hiding it, design becomes a tool for critical engagement rather than passive consumption.

Atelier HOKO (2025), Ng E., *A Daily Act*. Singapore: Temporary Press.

Barthes, R. (1977) 'Death of the Author', in *Image, Music, Text*. London: Fontana Press, pp. 143–148.

Blauvelt, A., Maurer, L., Paulus, E., Puckey, J. and Wouters, R. (2013) *Conditional Design Workbook*. Amsterdam: Valiz.

Cottier, N. (2018) *Letterform Variations*. Self-published.

Drucker, J. (2014) *Graphesis: Visual Forms of Knowledge Production*. Cambridge, MA: Harvard University Press.

Eastside Projects (2016) *Mind Walk I – Karl Nawrot*. Available at: <https://eastsideprojects.org/projects/karl-nawrot-mind-walk-i/> (Accessed: [Insert Date]).

Herdt, T. (2002) 'Generative design and the problem of anticipation', in Buurmann, G.M. and Rölli, M. (eds.) *The Intrinsic Logic of Design*. Basel: Birkhäuser, pp. 118–127.

Hodgson, J. (2000) *Rug* [video]. Available at: <https://hodgsonfilms.tumblr.com/post/158205410707/rug>.

Jong C. d., Klemp K., Mattie E. and Rams D. (2021). *Ten principles for good design*. Munich: Prestel.

Lupton, E. and Lipps, C. (2013) *Graphic Design: The New Basics* (2nd ed.). New York: Princeton Architectural Press.

Mason, B. (2016) 'A Type Designer Who Thinks Like an Architect', *Eye on Design*, [December 13th, 2016]. Available at: <https://eyeondesign.aiga.org/a-type-designer-who-thinks-like-an-architect/>.

Quintanar, J. (2021) *Transformando lo físico*. Spain Arts & Culture. Available at: <https://on.spainculture.us/transformando-lo-fisico/jose-quintanar/>.

Reinfurt, D. (n.d.) *Multi* [software/app]. O-R-G. Available at: <https://o-r-g.com/apps/multi>.

Till, J. (2009) 'Coping with Contingency', in *Architecture Depends*. Cambridge: MIT Press, pp. 45–61.

Walker Art Center (2020) *Karl Nawrot: Mind Walks*. Available at: <https://walkerart.org/magazine/karl-nawrot-mind-walks>.

[Figure 1](#): Positions through Iterating (Author's own).

[Figure 2](#): Positions through Contextualising (Author's own).

[Figure 3](#): Traditional Korean Dancheong patterns on a temple structure. Available at: <https://artnseoul.wordpress.com/2016/01/28/patterns-colors-of-dancheong/>.

[Figure 4](#): Reinfurt, D. (n.d.) Multi [software interface]. Available at: <https://o-r-g.com/apps/multi>.

[Figure 5](#): Karl Nawrot's Breu typeface showing stencil construction. Available at: <https://eyeondesign.aiga.org/a-type-designer-who-thinks-like-an-architect/>.

[Figure 6](#): p5.js code experiments (Author's own).

[Figure 7](#): Dancheong typeface - final letterforms (Author's own).

[Figure 8](#): Jose Quintanar's Drawing Templates and Dutch Landscapes. Available at: <https://on.spainculture.us/transformando-lo-fisico/jose-quintanar/>.

[Figure 9](#): Line smoothing in cartography. McMaster, R.B. and Shea, K.S. (1992) Generalization in Digital Cartography. Available at: <http://www.geogra.uah.es/patxi/gisweb/LGModule/LGSmoothing.htm>.

[Figure 10](#): Conceptual diagram of smoothing vs. unsMOOTHING (Author's own).

[Figure 11](#): Breu typeface. Available at: <https://eyeondesign.aiga.org/a-type-designer-who-thinks-like-an-architect/>

[Figure 12](#): Extracted modular parts of the Dancheong typeface (Author's own).

[Figure 13](#): Principle 4: All-wave radio T 1000 (1963). In: Klemp, K. and Mattie, E. (eds.) (2017) Dieter Rams: Ten Principles for Good Design. Munich: Prestel, p. 106.

[Figure 14](#): Principle 8: Sprocket calculator ET 33 (1977). In: Klemp, K. and Mattie, E. (eds.) (2017) Dieter Rams: Ten Principles for Good Design. Munich: Prestel, p. 122.

[Figure 15](#): Principle 2: Pocket radio T41 (1962). In: Klemp, K. and Mattie, E. (eds.) (2017) Dieter Rams: Ten Principles for Good Design. Munich: Prestel, p. 98.

[Figure 16](#): UK Signage Disruption studio work (Author's own).

[Figure 17](#): Scanned pages from A Daily Act: Workbook. Atelier HOKO (2025) A Daily Act. Singapore: Temporary Press, pp. 20, 29.

Appendix 1.

Dieter Rams' Ten Principles for Good Design:

1. Good Design is Innovative
2. Good Design Makes a Product Useful
3. Good Design is Aesthetic
4. Good Design Makes a Product Understandable
5. Good Design is Unobtrusive
6. Good Design is Honest
7. Good Design is Long-lasting
8. Good Design is Through Down to the Last Detail
9. Good Design is Environmentally Friendly
10. Good Design is as Little Design as Possible

(Jong C. d., Klemp K., Mattie E. and Rams D. (2021). Ten principles for good design. Munich: Prestel.)